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1. INTRODUCTION

In this section we shall start with as non-technical as possible, and therefore occasion-
ally imprecise, a description of the main ideas and results of this paper. All the requisite
qualifying details will appear in the following sections.
(a) The usual setting. Superprocesses arise as infinite density limits of systems of branch-
ing Markov processes. We start with a parameter 1L > 0 that will eventually become large, a
finite measure m on R, and a Poisson point process IID on Rd with intensity measure pim.
The K = 0(p) random points, X0,... , XK of the Poisson process will be the initial positions
of a system of particles. Each of these K particles follows the path of independent copies of
"a Markov process Y, until time t = i/p.

At time 1/iu each particle, independently of the others, dies and leaves behind itself
"a random number of "children", with the family sizes of the different "parent" particles
independently distributed. The mean family size is one. The individual particles in the
new population then follow independent copies of Y, starting at their place of birth, in the
interval [1/p, 2/ju), and the pattern of alternating critical branching and spatial spreading
continues until, with probability one, there are no particles left alive. It is clear that this is
a purely Markovian system.

The basic process of interest is the measure valued Markov process

Xf (A) = {Number of particles in A at time t} (1.1)is

where A E Bd = Borel sets in Rd. Note that, for fixed t and JL, X' is a purely atomic
measure.

It is now well known that under very mild conditions on Y the sequence {X'}Ž_>i
converges weakly, as p -+ o0, and on an appropriate Skor.tiod space, to a measure valued
process which is called the superprocess for Y. If, for example, Y is a Brownian motion
with generator A, the limit process is the super Brownian motion. Details can be found, for
example, in Ethier and Kurtz (1986), Walsh (1986), and the major recent review by Dawson
(1993).

(b) A non-Markovian model. The motivation for this paper is to investigate the above
problem when the underlying motion of the particles is non-Markovian. This problem can
be divided into two distinct subproblems, depending on what happens at the birth/death
times kip.

The simpler of the two cases arises when a general non-Markov motion is allowed, but
at birth/death times each of the new particles begins a motion independent of those of its
ancestors, and of those of other particles, other than for the fact that it begins its motion
at the deathplace of its immediate parent. Much of the Markov structure is thus preserved.
We do not consider this case in the present paper.

In the more interesting case, the one which we do consider, the particles follow the talmu-
dic dictum of "Know from whence you have come", (Talmud, circa 400), and at regeneration
times retain some memory of what their ancestors did in the past. We now begin with a
more precise setup.
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We append to the state space R a cemetery state A, and adopt the convention that
O(A) M 0 for all functions 4: Rd -4 Rk. We fix 0 < p < oo, and recall that K = 0(p) is the
number of particles alive at time zero.

In order to label our particles, define the family of multi-indices

I := {a = (ao, al ... ,aN): aO E A(, ai > 1, i_> 1, N> 0). (1.2)

Define the "length" of a by [al = N, and set ali = (ao,... ,oi) and a - i = (ao,...

Induce a partial order on I by setting

p -. a 4 = -- i for some i < Ioi, (1.3)

and, for any t > 0, write a - t, if, and only if

° _< t < l+ I (1.4)

P p

Furthermore, for two indices a and fl, set

ra,# = max{k: ai = fi, for all i < k}, (1.5)

and write a A a = l,, - ,P. For each a E I, let {Y0 (t), t >_ 0}, be a copy of the
generic process Y with Y0  0, chosen so that the family {Y*}GEI satisfies

YOMt) S ra-i(t), (1.6)

for all 1 < i < al. Again, for each a E I, let {Yr}gt>o be a filtration. We require that
t _ Y,6, for all t > 0, whenever a -< P, and that Y*(t) is Yt* measurable. In general, we

think of -'t as the r-algebra generated by {Y 0 (s) s 5 t}, but, even in the most interesting
of our examples to follow, this will not be the case.

Furthermore, for any a, P E I, and t > r*,fl/p, we shall require that Y&(f) and Yf(t)
are conditionally independent given y4ra/pA. (When Y is the a-algebra generated by Y,

this is equivalent to requiring conditional independence given {y*A^(s): 0 < S < 70,1/p};
i.e. Children recall their parent's behaviour, but, given this, ignore their peers.)

It is not hard, although slightly tedious, to show via a standard Kolmogorov-type con-
struction as in Theorem 2.7.2 of Ash (1972) that such a system is well defined. This almost
defines our particle system, but we are not quite finished, for we have yet to introduce ran-
dom branching. This we do by thinning out the full tree of particles. For each a E I, let N "
be an independent copy of a generic non-negative random variable N, which represents the
size of families at branching. We assume throughout that EN = 1. Now define the stopping
times .

- 0 if a 0 > K 0
-min0:j 1{±Iif:NaiE.= 0} if this set 0 and ao0 K
SIotherwise.

Ja

3
Av~ilability Codes

Avail and Ir
Dist Special

DTIC QUALITY INSPECTED 5



We can now finally define the particle paths of interest to us by setting, for each a E I,

X' YOt) ifa+ <(to (1.7)A^ if t >__r*.

Thus X* is only "alive" (i.e. # A) at time t if it has a continuous stream of ancestors.
The definition (1.1) of our basic measure valued process for the finite system is now more

precisely definable as

Xr(A) = #{XrEA:a ~t} (1.8)

We shall also find it useful to construct another measure-valued process associated with
the above branching system of moving particles. Assume that the generic process Y has
sample paths in D[O, co), the space of Rd-valued cadlag functions (equipped with the Sko-
rohod J1 topology). Furthermore, for any function f: [0, co) -- Rd and t > 0 define a new
function f ) by f(')(s) = f(t A s). Then the historical process for the above particle system
is well defined as

Ht'(A) = #{(Xo)(i) E A: a (1.9)

where now A is a Borel set in D([0, co), Rd).
If A E Bd, then At := {f E D[O,co): f(t) E A} is a Borel set in D[O,co). Thus it is

immediate that Xr(A) = Ht(At), and so, in principle, knowledge of the historical process
implies knowledge of the basic process Xt. (The converse is not generally true, although for
special processes, in high dimensions, it is. cf. Barlow and Perkins, (1993).)
(c) Self-similar processes. To get some interesting limit theory from the set-up described
above, we shall have to make some assumptions about the structure of the generic process Y.
In particular, we shall assume that {Y(t), t > 0} is an H-self similar Rd-valued stochastic
process with stationary increments. That is, for any n > 1, 0 :_ tl < t 2 < ... <t., h > 0
and c > 0, there exists a real H such that

(ct).. y(Ct.)) K CH (y(t,),..., y(t")) (1.10)

(H-sell similarity) and

(Y(t 2 + h)-Y(ti + h), Y(t3 + h) - Y(t 2 + h)..., Y(ti + h) - Y(t,-i + h))
--(Y(t2)- rtY(h) - Y0t2),...,r t, Y )- ~,l(.1

(stationarity of the increments). The common alias for "H-self similar with stationary in-

crements' is "H-sssi", and we shall use it in the sequel. We shall also assume that

0 < H < 1, and EIIY(1)IIP < co for some p > 1/H. (1.12)

It is worth noting that mere existence of the first moment of Y(1) forces H to be in (0,11, and
H 1 leads to a degenerate process (Vervaat 1985). Note further that the H-sssi property
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of Y implies that EIIY(t) - Y(s)IlP = alt - sIPH for every t,s > 0 with a = EIIY(1)IIP, and,
of course, that Y(0) =_ 0.

An immediate consequence of the moment assumption (1.12) is that Y has a version
with continuous sample paths. This can be checked in a variety of ways, one of the simplest
being via a version of Kolomogorov-Lo~ve theorem, (e.g. Billingsley (1968), Theorem 12.4).
We shall assume throughout therefore that all copies of Y have continuous sample paths.
When a component Y of Y E Rd is a one-dimensional Gaussian process, it is the well known
fractional Brownian motion and so can be represented as

Y,(t) = k, ((t - )H-1/2 _ (_r)+-/ 2 )B(dr), t > 0 (1.13)

for H 91 1/2, where ki is a constant and B is a standard Brownian motion on (-oo, oo).
For H = 1/2, (1.13) is not really very informative, and 1', is simply a constant multiple of
standard Brownian motion. It is easy to check (cf. (1.15) below) that the covariance function
of fractional Brownian motion is given by

Cov(Yi(t), Y(s)) = Var(Yi(l))[t2H +S 2H - It -12H (1.14)

It is also straightforward to check that every (one dimensional) H-sssi process with finite
second moments has the same covariance function (1.14) as the fractional Brownian motion.
However, these are not the only examples, and there do exist non-Gaussian one dimensional
H-sssi processes with finite second moments. (In fact, with all moments finite; cf. Surgailis
(1981).)

Our main weak convergence result concerning measure valued processes (1.8) is stated
and proved in Section 2, under the dependence structure outlined in Section 1(b) above, and
the assumptions that the generic particle motion Y is H-sssi, satisfying, together with the
branching mechanism N, an appropriate moment condition. The result parallels the weak
convergence to the superprocess known in the purely Markov case.

(d) More on fractional Brownian motion. Since the general convergence results just
described do not require any particular structure for the particle motion Y, it is not possible
to say very much about the limiting measure-valued process. To do so, we specialize to the
particular case of the particles moving according to the d-dimensional fractional Brownian
motion. (i.e. each component of Y satisfies (1.13) for some ki, and the same H.) Given
the general terminology of superprocesses, the measure valued limit process could well be
termed a "super fractional Brownian motion". What we shall establish is a representation
for this limiting process which is related to the usual super Brownian motion.

To do this, we require a system of branching Brownian motions on (-oo, oo), so as to
exploit (1.13) to give a compact and useful representation of the particle system.

Retaining the indexing notation developed above, let {{W*(t)}t>o}GEI be a system of
branching Brownian motions, all starting at the origin. Recall that at t = 0 there are K
initial points for this system. Let W',..., WK be K extra Brownian motions in positive
time, independent of one another and of the initial system. For a E I define the process

B*(t) = ltj>o](t)W*(t) + l[j<0](t)WeO°(-.t), -0o < t < 0o. (1.15)
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Then each B* is a Brownian motion on the entire real line, centered by setting B*(0) =- 0.
Now set, for each a E I

Y"(t) - ((t- - ( H-,1)/2) B(dr), t > 0. (1.16)

Finally, define the thinned system {XO} as at (1.7). However, to simplify the notation for
the moment, assume that all the initial points zx. are zero. That is, all the paths X*
start from the origin of Rd. It is obvious that the branching system so constructed fulfills
all the requirements of the previous section, with the filtrations .Ft, t > 0 taken to be

-oo < _< t}.
Now, however, we have far more structure than we had before.
To see this, let H• be the historical process for the BO system, so that for any Borel set

A of C(R, Rd) and t > 0 1

Ht(A)- I A (B*). (1.17)

Taking the integrated form of the measure (1.8), it is now immediate that, for any nice test
function 0,: R , --

x )= f, O(x) X'(dx)

(1.18)
0( ~(((t - r)H-1/2 - (rH-12)B d)

= C(,4L f( ((t - r)H-1/2 - (-r)H-1 /2 ) y(dr)) H,"(dy).

(It is easy to pass from line to line here if one keeps in mind that, with the exception of the
one stochastic integral, all other integrals are really just finite sums.)

In Theorem 3.1 we shall show that, at least for H > ½, it is possible to pass to the
p �* oo limit in (1.18). Since the final line in (1.18) is then a functional of the historical
super process for Brownian motion (albeit on all of R rather than just *+), we obtain super
fractional Brownian motion as a function of super (historical) Brownian motion, giving us
the main result of Section 3, and title of the paper.

It is clear that the explicit representation (1.i8) allows for a far clearer understanding of
the limit process than does the more general procedure which we descibed earlier, in which
nothing other than the existence of a limit process is established. We should note, however,
that the previous subsection covers a much wider range of processes than mere fractional
Brownian motion. In fact, a representation like (1.18) would seem to be possible only for
fractional Brownian motion, or other processes representable as functionals of systems of
branching Markov processes. The approach taken in Section 2 works in far greater generality.

As we shall see in Section 3 below, (1.18) only seems to work, in the limit, for H > •.1
While it is not totally clear whether this is an artifact of the proof or not, we believe that
the result may not be true for smaller H. We shall explain why in Section 3.



2. WEAK CONVERGENCE FOR GENERAL SELF-SIMILAR PROCESSES

Throughout this section we shall assume the branching structure, with conditional inde-
pendence of new particles, described in Section I(b). We shall also assume that the particle
paths are those of H-ssii processes, and that the Poisson distribution of initial points is
governed by a finite intensity measure m.

Let MF(Rd), endowed with the topology of weak convergence, be the space of finite
Radon measures on Rd, and C([O, T), MF(Rd)) and D([O, T), MF(Rd)) the spaces of con-
tinuous and cadlag functions from [0, T7 to MF(R(). When T = oo we denote these more
briefly by C(MF(R•t)) and D(MF(Rd))

The following is the main convergence result of this section.

Theorem 2.1 Suppose that for some p > 2 both EIIY(1)IIP < oo and ENP < co. If
H > l/p, then the sequence {X1}0=1 of MF(Rd)-valued processes converges weakly in
D(MF(RdI)), as u --+ oo, to a MF(Rd)-valued process X. Furthermore, X has a version
with all sample paths in (MF(Rd)).

Remark: We shall see below that the finite-dimensional distributions of X" converge with-
out assuming existence of any moment higher than second for the branching distribution
and for every H E (0, 1). The extra assumptions are required to establish tightness. We do
not know, however, whether the condition H > 1ip is necessary, or only a function of our
method of proof.

At an intuitive level, the qualitative aspects of this requirement are readily understood.
Lack of smoothness at the level of XO can be due to one of two sources; irregularities in the
particle paths, or large spurts of population growth. Recalling that the sample paths of the
process Y become rougher as H decreases, the need to balance the moments of Y and N
against the smoothness parameter seems more than reasonable.

Proof of Theorem 2.1. The proof is rather long, and so will be broken up into a number
of stages.

Initially we shall prove that the sequence {X,}), converges weakly in D(MF(jd)) to
a stochastic process X which has a version with all sample paths in C(MF(Rd)), where
RF is the one-point compactification of Rd. Only at the very end shall we move back to
D(MF(Rd)).

To establish the weak convergence of {X")}, we start with the usual reduction:

Let C, be the collection of real valued continuous functions on Rd which have a continuous
extension to the one-point compactification of Rd (that is, the functions with a finite limit
at co). We claim that it is enough to prove that for every V E C' the sequence {XP(()},
converges weakly in D(R) to a process which has a version with all sample paths in C(R).
It will then follow from Theorem 3.7.1 of Dawson (1993) that the sequence {X0},1 is tight in
D(MF(Rd)). To establish convergence of finite dimensional distributions, note that since the
limiting process for each {XP(W)}) has continuous sample paths and Rd is compact, every
limit point of the sequence {X"}), must have a continuous version. It then follows from
the assumed convergence and Theorem 3.7.8(a) of Ethier and Kurtz (1986) that for every
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t1 _ 0,... ,tp 2 0 and V E C1 the sequence {(Xt(V),. .. ,X() converges weakly in RP,

and so the sequence {(XO..... ,Xt$)} converges weakly in (MF(i))P. A final application
of Theorem 3.7.8(b) of Ethier and Kurtz (1986) shows that the sequence {X'}, cannot have
more than one limiting point. This gives the full weak convergence that we require.

We therefore now fix V E C1 and consider the sequence {Xu'(()}j, of D(R)-valued pro-
cesses. It is obviously enough to consider a function V with a bounded first derivative (such
functions are dense in C,; see Theorem 3.7.1. of Dawson(1993)), and henceforth we shall
consider only such functions. We start by establishing the convergence of finite dimen-
sional distributions of this sequence. The proof is a reasonably straightforward application
of Lemma 3.1 of Dynkin (1991).

We shall give enough details here to allow the reader to check that Dynkin's theorem
applies to our situation, without repeating that result in full detail. However, it is worth
noting that Dynkin's result gives convergence of finite dimensional distributions for branching
systems of not-necessarily Markovian systems in an extremely general setting. His result is
therefore crucial in the following argument. It does not, however, give full weak convergence,
(i.e. in the function space setting which includes, of necessity, tightness of some kind).
Furthermore, in the non-Markov setting, it works only at the level of the historical process.

Choose any tl,..., t. in [0, oo). We define p continuous real valued functions on C(Q , Rid)
by

MiY) = V(0 0ti), i =1,...,p.

Observe that for every p > 1

(Xt'ý(ý),. .... (,Xp))= (Ht", fl), ,H` fp))t

where HO is the historical particle process (1.9) corresponding to XO. Apply now Lemma
3.1 of Dynkin (1991) to the sequence {H,1}1, with, in his notation, K(dt) = dt, branching
mechanism Vt(x,z) independent of t, p and x and, finally, with the additive functional A
given by

p

A(B,w) = ltEBfi(W)
i=1

for a Borel set B and w E C(R, Rd). The application is straightforward: simply treat H"
as a regular (non-historical) superprocess with respect to the time inhomogeneous Markov

process k defined by
Y(t) = (t, Y(s),s <_ t).

(A detailed example of how to do this is given in the following section, where we have more
need for rigour.) Note that for each t > 0, Y(i) is R+ x C(R,Rd)-valued. Since Dynkin's
result does not require any regularity assumptions on the Markov process, we conclude
immediately that the sequence

converges weakly in RP as p -c co, and, therefore, so does the sequence

(X V ,...,X ',,(V), p = 1, 2,.. .

=,,m•m mmmm•mmmm mm• mm m =



This concludes our treatment of the finite dimensional distributions. (Note, by the way,
that we have not been able to say anything useful about their structure!) We now proceed
to establish tightness for the sequence {X0(V))},in D(R). This, in itself, is a rather long
calculation that needs to be broken up into a number of steps.

A simple extension of Theorem 7.2 of Ethier and Kurtz (1986) (and the fact that 9 is
bounded) show that it is enough to prove that for every e > 0 and T > 0 there is a 6 > 0
such that

1-P (T Ž(21

where the uniform oscillation function w is defined by

w(f,esT) = sup If(t) - f(s)I. (2.2)
0:5,1:<it-SiRS

As a first step, we study a discrete version of the oscillation (2.2), which is somewhat
easier to deal with. For p = 1,2,..., 6 > 0 and M > 1 consider

wp,(f,6,M) , max If(ii/P) - f(i 2/s)j. (2.3)
lil-'21_560

We shall handle this oscillation function via metric entropy methods, for which we need
to start with some moment calculations. For 0 _< ii < iS _< Mi, write

ý V) =(Y&~(ii /,) + X.o) I 0/1A <7(a))

0".il/p

IA Y i/A + X°o) I (/P o7 ))& i 2 /JU

U- + 0(yaij1 I) +zoo0)(i -N.(ii,i 2 ))1(ii/, < 7(a))
a-il/p

+ 1[1r' E (YO(ii/,.) +X 0 0 )No(il,i 2 )1(il/lP~ <(a))

w 'illp

0' i2/0

Al (ih, i2 ) + A2(il,i 2),
(2.4)

where for Q, i1 /p, Na(ihi,2) is the number of "descendants" of Y* alive at the time (2.
Observe that

A2 (ih i2 ) =i1 (Wo(Y&(ii/p) + Xoo) ... V(Y*(i 2 /P) +Xao))1(i 2 /A <7(W))

N(i2 1P)F, Di,
j=1

(2.5)
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where N(i 2 /p) is the total number of particles alive at time i2/;1.

We shall use two simple inequalities which can be easily checked from the first principles.
The first is a version of Burkholder's inequality. Let XI, X2,... be independent zero mean
random variables such that EIXjjP < oo for every i > 1. Then, letting c be a finite positive
constant, in general dependent on p, that is allowed to change from line to line,

El y Xjii _ c(( )P/2 + -. EIXjlP), (2.6)
j~l __ jffl

for every m > 1, where OJ2 := EXJ. Secondly, let No be a critical branching process starting
with a single individual, with a progeny distribution having a finite pth moment for some
2 < p < 4 (say). Then there is a c E (0, oo) such that for any n > I

EN' <_ cnP- 1 . (2.7)

Observe that

N(i2/p)
EIA 2(il,i2)I' < C E Z (D3 - EDj)I' + EDil'EN(i2/iP)'). (2.8)

.j=1

Write

N(i 210) N(O)
El E (D,-EDi)lP:=Ej E SkI",

j=l k=1

where Sk is the sum of all the terms under the summation in the left hand side corresponding
to a single progenitor existing at time 0 and N(O) is the initial number of particles. Then,
by (2.6), we have that

E 2(i/F) (N(O) 2 N(O)
El (D, - ED -1)< c(E Var(Sk))' + E F EISkI)

j=1 =1 k== (2.9)

= c(EN(0)p/2 (Var(Si ))p/2 + EN(0)EISIP)

We now evaluate the moments of SI. Let N• be the size of the ith generation of the jth

particle from the first generation. For any 2 < a < 4 we have

10
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! 2N

EISI*I:= El E(Di - EDi)l*
j=1

2 EED14v 4\/4

E(E (Di - ED3)I)
j= 1

N1! N1  
I

' 2 -Ea)/( D 4)) (2.10)
-5 \Lý... EY ED ((D E,1  . Di-E~4

"ji=I j4=1
N'E N' .a4

... lila- 14H a/4
!5 cE ( ' '2IW

=i1 j4=1

= Clil/P - i2/0 ,HE[Ni2]a

< clil/P - is/ldHia"-1,

where ED stands for expectation taken with respect to the Di's. Applying (2.10) first with
a = 2 and then with a = p we conclude from (2.9) that

El E (Di - EDi) I S< clil/g - is/ i pzpp. (2.11)
j=1

To complete a bound for (2.8) we need to evaluate the moments of N(i2/p) appearing
there. Retaining the same notation, a repeated application of (2.6) and (2.7) (in the notation
of (2.7)) yields that

E(N(i2 /P)') :5 cE(N(O + (fe) E (Nj ))2 + EjNjJ 11P 1 5 cpP. (2.12)
-- j=

It follows now from (2.8), (2.11) and (2.12) that

EIA2 (il, i2 )lp 5 c1i4/1 - is2/11H. (2.13)

We estimate the pk, moment of Al(ii, i2 ) in a similar manner:

N E(i/ 1)) 2)p/2 N(ii/li) j )
g[AI (il, i2)[lp <-- P•E{ E E (Ni-'-il +1)2 ~'-i

\" j=fi j=1

ScF-P[02 _ iO)'/2EN(i, /)p/ 2 + (02 - ij)P-'EN(ij/p)] (2.14)

5 c(lil/ -i 2 /#Jp/2 + jil/p -,21al'-1,

where at the last step we used (2.12). It follows from (2.4), (2.13) and (2.14) that for any
O :5 <i 2 <MP

ElX,/,,(v) - X,1,(j)l 5 c(liP l - i2/#r/2 + lil/A - i 2 iaPl). (2.15)
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We can now use our moment estimates and a metric entropy argument to bound the
oscillation function. On the set SO := {0,1/ 1P,...,M - 1/P,M} define a metric d" by
setting

dt`(ily, i2/p) = (EIXý,I(•) - X ( /.

For an f > 0 let N(e) be the smallest number of dt-balls of radii not exceeding o needed to
cover the whole of SP' . (For ease of notation, we shall not explicitly display the dependence
of N on p.) It follows from (2.15) that

N(f) _< c - ma(2,1 1H).

In particular, this implies that there is a constant K < oo such that for every p> 1

1 M (N(c)) 1"'df < K.

It now follows from Theorem 11.6 of Ledoux and Talagrand (1991) that there is a function
h: (0, 1) --- (0, 1) such that h(6) --+ 0 as 6 -- 0 and such that for every p > I and b E (0, 1)

E max I[•/,(•) - X/,(v)I < h(6). (2.16)
il,'2:SM# 9 A1

01 -i22_16'

An application of Markov's inequality now establishes a discrete version of (2.1): for every
E > 0 there is a 6 > 0 such that

li"-m P (W'.(X" m•, b, T)>, < ,.(2.17)

It is easy now to bridge the gap between (2.17) and (2.1): observe that for any t, s E [0, T]
we can place t in some interval [il/i, il + l/p] and s in some interval [i2 /Y, i 2 + l/p]. Then
an argument very similar to that leading to (2.15) shows that there is a c E (0, oo) such that
for every t, s E [0, T]

EIj'(V) - Xf(p)J' < c(It - sIp12 + it - sIPH), (2.18)

and then (2.1) follows as before by an application of Markov inequality. This completes

the proof of the fact that {XPt}1 converges weakly in D(MF(ig)) to a stochastic process X
which has a version with all sample paths in C(MF(P')).

It remains to prove that the limiting process X is supported by R, in the sense that there
is an event fl+ of probability 1 such that for every t > 0 and w E f?+ we have Xt({oo}) = 0.

We may and shall restrict t to be in the interval [0, T] for some T > 0. For a fixed r > 0
consider a bounded H61der function w, on Rd such that 0 _<5 V(x) _< 1 for any x E Rd , with
W,(z) = 1 if Izil > r, wp7(z) = 0 if flzII < r/2, and with a Halder constant 6, say, fixed.
(6 > 0.) (Such a function always exists for r large enough, once 6 has been fixed.)

Of course, (2.16) and (2.18) apply fully to. W, and since the constant c appearing there
depends only on max.Ei IV,(z)l and on the H61der constant of V,-, we conclude that for

12



every t, a E [0, TI, and any r large enough, (2.18) holds, and the constant c does not depend
on r. Writing

d",(t, s) = (EIXt(v,)- x- (v,)lP)w/,

t, s E [0, T], we estimate next the dalt-diameter D, of [0, T7. We therefore have

(dO(t,s))t < c max EIXr•(Pr)Il
r - o5t<_T

Sc,-_ max El 1: (IY*(t)+aoo > r/2)1(t < r(c))IP
O<i<T 0/t

< oIA- max ElF,1(jlY*(t)l > r/4)1(i < (Q<))l'-- O<_t<T at%

+ C1-P omax El E I (11=.ol1 > r/4) i (t < r(ck))I1P.

We now repeat the kind of arguments that led to (2.13) and (2.14) to see that for any
O<t<T

El E I (IIYa(t)lI > r/4)1 (t < 7(a)) IP

-c lE[I (IlYa(t)ll > r/4) - P(IIY-(t)ll > r/4)]1(t < 7(a))1I

+ P(lIY-(t)lI > rl4)EN(t)'I

•5CI 4p/2 (EW2)p/2 + ,OElWjP + P(;IY&(T)Il > 7.14) EN(t)P],

where
N[ts)J.

W = E [1(11Ye(t)ll 1 > r/4) - P(IIY<"(t)lI > r/4)]. (2.19)
j=1

Repeating the computation in (2.10) we easily conclude that for any 2 < a < 4

EIWIa _< Cja-''(IjY<(')II > ,r!4) a/4< CA,"-'P (ilY<'(T)Ii > ,./4)v,4.

Substituting the last bound into (2.19) and using (2.12) we conclude that

El F, 1(IIYa(t)II > r/4)1Q( < r('c))I' s- bPP(IIY"(T)II > r/4)". (2.20)
a-t

Furthermore, let Nr(O) be the number of initial particles located at a distance of more than

r from the origin. Since Nr(O) has Poisson distribution with mean pm(Brc), where Br is the
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closed ball of radius r centered at the origin, we obtain as in (2.12) that for any 0 _< t _< T

El E,1 (11#,,o11 > r-/4) I (t < 'r(a)) IP

(Nr4 ) + (0)p/2 ENN,1_0lp) (2.21)
" _ j=1

_5 cIAP(M,(B;/4))P'/'

A consequence of (2.20) and (2.21) is that

(d"(t,s))' < c[P(IIYO(T)II > r/4) + (/(BI, 4))"' 4] =D().

Observe that D(r) 1 0 as r --+ eo. We can get now an upper bound on the size of
suP0<t<T IX'(,r)I by using (2.18) with Theorem 11.1 of Ledoux and Talagrand (1992)
We have

E sup IX'(,.) - IX(v,.)l <c D -)(Cmax(2.,/H))h/P d
O<t,s<T tf

= cD(r)9

for some 0 > 0. Therefore,

E sup IX'(v,)l < EIXi'(Pr)I + E sup IX,(w,) -IX,"((,)l
O<t<T O<t,s<T

<_ c(pENr/ 2(0) + D(r)9 ) (2.22)

= C(m(Br,/) + D(r)e).

Note that the constants in the right hand side of (2.22) do not depend on p.

Since X"I(r) =• X(V'r) weakly in D(R) as p -- co, we conclude that

sup Xt(pT) *: sup Xt(v,) in distribution
O<t<T O<t<T

as p --, eo, and so by Fatou's lemma we get

E sup IX,(V,)l 5 c(m(.B,) + D(r)#).0<tT

By the definition of V, we immediately obtain

E sup X,({oo}) _ c(m(B,/,) + (r)#),

and since the above holds for any r large enough, we let r -- oo to get

E sup X({eo}) = 0,
O<t<T
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implying that there is an event fl+ of probability 1 such that for every t > 0 and w E fl+
we have Xt((oo}) = 0.

This completes the proof of Theorem 2.1

3. THE FRACTIONAL BROWNIAN MOTION CASE

In this section we have two tasks. The first is to carefully define the process that we
plan to use in obtaining a nice representation for the limit of branching fractional Brownian
motions. The second is to establish the weak convergence result.

(a) Historical Brownian motion with tails. In this subsection we shall closely follow
Perkin's (1992) construction of historical Brownian motion, and of certain stochastic integrals
associated with it. Much of what we have to say could well be swept under the carpet with
a totally justifiable "it is easy to see as in Perkin's paper", and we shall actually often do
so. However, we nevertheless require enough notation to properly define our process, and to
establish some technical results, in the following subsections, which cannot be "easily seen",

•ad deserve checking.
Since the dimension d of our processes is fixed throughout, write, respectively, C and C+

for the space of continuous functions from (-oo, oo) and [0, oo) to R, endowed with topology
of uniform convergence on compact intervals, and let C and C+ denoting the corresponding
a-algebras. Let Ci denote the canonical filtration on C (uncompleted and not made right
continuous). If y E C, w E C+, and s E R, let

f ,(t ) if t < s,Sw(t_ -s) if t > s.

Denote Wiener measure starting at x on (C+,C+) by P., and let MF(C) denote the space
of finite measures on C. For y E C, set

Ye'T) {Y(t) ift <s,
y(s) if t > s,

and for s > 0 let
MF(C)" = {( E MF(C): y(= ) for v a.a. y).

Choose v E MF(C)(s) - {0}. Define P.,, E MF(C) by

P,.,(A) = L P,(,)(w: (y/s/w) E A)v(dy).

Let 3 - {(s,y) E R+ x C: y = y(')}, and for (s,y) E *d let P1,, = P,, 6,. Finally, define

probability measures P.,, and &s,, on C = C([0, oo], *d) by

Ps,,(A) = Ps,,({w: (. +., (Y/s/w)(*+')) E A}),

P,,(A) = fib.,,(A) v(dy).
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where v E MF(C)(') - {O} and A E C = Borel sets in C. If Bt(w) = wt denotes the coordinate
map on t! and {tt+} is the canonical right-continuous filtrat ion then B = (C,C,C,+, Bt, P,,,)
is a continuous strong Markov process with a Borel semigroup.

So far, we have done nothing other than to repeat Perkins' (1992) construction of the
usual historical Brownian motion, with a redefinition of C as functions on the whole real line
rather than just its positive half. Further details can therefore be found in Perkins' paper,
and the references cited therein.

To see how all this relates to the constructions of the previous section, we require some
notation. For any function y on R, define 9 by p(t) = y(-t). Similarly, if A is a Borel set
in C(-oo, oo), let A be the set defined by A = {1: y E A}. Finally, if m is a probability
measure on C(-oo, oo), define in by fin(A) = m(A). We leave it to the reader to check the
following easy lemma.

Lemma 3.1 In the construction above, take v = Po at (3.2); i.e. Wiener measure in
"negative time". If B1 (w) = (t,B((w)), then, fort > 0, Bt is the full path, from -oo to t, of
the "Brownian motion with tails" described in the previous section, and constructed explicitly
at (1.15), but stopped at time t. We let Po denote the law of Bt on C.

Returning to the general setting above, it now follows from the results of Fitzsimmons
(1988) or Dawson and Perkins (1991) that Bi has an associated MF(*d ) valued superprocess
H, itself a continuous, strong Markov process with a Borel semigroup. If Q0,,, denotes the
law of ft with f'o = 0 x v, then iHt = 6t x Ht, for all t > 0 a.s. We let Q0 denote the law
of H on (flH,'7), where SIH = C((O, 0o), MF(C)) and 7H V= a(w, : s < n). The process
H is a time-inhomogeneous Borel strong Markov process with MF(C) valued paths. This is
the historical process that we shall need to work with. In the setup of Lemma 3.1, it is the
"historical Brownian motion with tails" of the previous section.

(b) Some properties of historical Brownian motion with tails. Let us start this
section by agreeing, henceforth, to denote "Brownian motion with tails" by BMT, and its
historical version by HBMT.

We now need to collect a number of properties of HBMT. The first is a straightfor-
ward application of Theorem 7.13 of Dawson and Perkins (1991), and describes the weak
convergence of a particle system of BMT's to HBMT.

Retaining the notation of Section 1(a), let {B*} 0 be a system of branching Markov
processes on &, with transition probabilities as at (3.2). Since the initial values B0 (0) are
all of the form (0, B0 ), where B is a BMT, and the intensity m underlying the initial Poisson

pEmeasure I1 is of the form m = 66 x P1 •.
Denote the associated, particle system, historical process by Hf; i.e. for A E C,

H l1(A) :=/•]•1('t) (3.3)

O-t

Note that 1-/ = -t x Hf, where
Htp(A) :-Il A(B*(t)) (3.4)

a-f
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and now A E C.
By Theorem 7.13 of Dawson and Perkins (1991) it follows immediately that Hi- con-

verges weakly in D([O, co), MF(*d)) to the sample continuous process i defined above. An
immediate consequence of this result is

Theorem 3.2 Under the above conditions, the sequence {HuS}#,> converges, in D([0, oo),
MF(C)) to the sample continuous process H defined above.

Our next step is to show that, under the random measures Ht, the paths y behave like
the branching BMT's used in our stochastic integral representation of fractional Brownian
motion. This is crucial to all that follows.

We start with a slight extension (because of tails) of a somewhat simplified (because of
non-random T in what follows) version of Perkins' (1992) Campbell measures:

Definition 3.3 Let 0 < T < oc. The probability measures PT on (0lH X C, 7f x C) defined
by

PT(A x B) E{1A HT(B)} = E{1A HT(B)} (3.5)
E{HT(I)} M

where M = E{HT(1)} = E{HO(1)}, are called the Campbell measures for the process H.

The next theorem follows directly from the definition of Campbell measures and the
properties of H as in the proof of Theorem 2.6 of Perkins (1992).

Theorem 3.4 Denote a generic point of flH X C by (w, y). Let yt be the co-ordinate mapping
on C. Then, for each T > 0, Bg(y) := yj is a BMT stopped at T on (f•l x C, 7N x C,PT).

The importance of this result for us lies in the following theorem, whose proof is a simpler
version (bar the extension to negative time) of the construction of the It6 integral in Section
3 of Perkins (1992).

Theorem 3.5 Fix 0 < T < co, and 0 < H < 1. Then the integrals

- r)H1/2(t- - (-r) /2) y(dr), (3.6)

can be defined, PT a.s., in the same fashion as an Ntd integral. Furthermore, under PT,
{Xt}-oo<t<T is a fractional Brownian motion of index H.

We require one more technical construction before we can turn to the main result of this
section.

Definition 3.6 Let 0 < T < oo. The probability measures p(2) on (flH x C x C, 7 x C x C)
defined by

p E{1A HT(B) HT(C)} E{1A HT(B) HT(C)} (37)

)(AxBxC) E{H1,(1)} MT + M2
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with M as above, are called the product Campbell measures for the process H.

Product measures of this form, for regular super Brownian motion, were studied in Tribe
and Adler (1993). The same techniques used there suffice to establish

Theorem 3.7 Let M = E{HT(1)} = E{Ho(1)}. Denote a generic point of fiH X C x C
by (, yI,y2). Let yi(t) represent co-ordinate mappings, and fix 0 < T < oo. Then, under

T(, the pair (Bj(t),B 2(t)):= (yI(t),y 2(t)) has the following distribution:

(B 1(t),B 2 (t)) f (Wo(t), Wo(t)) if-co < t < 7,
t(Wo(r) + WI((t A T) - r), Wo(r) + W2((t A T) - r)) ift > r,

where Wo is a BMT, W1 and W2 are standard Brownian motions, and r is a non-negative
random variable taking the value 0 with probability M/(T + M) and whose conditional dis-
tribution, given {r > 0}, is uniform on [0, T]. All four variables, Wo, WI, W2 and r are
independent of one another.

(c) Back to branching. With everything properly set up, we can now return to the setting
of (1.16)-(1.18), where the branching fractional Brownian motions were set up as a function
of a system of branching BMT's.

To set up our main result, let {B*}OEI be a branching system of BMT's as described
above, and define a system of index-H fractional Brownian motions {Y'}l.E! as in (1.16).
As pointed out in Section I(d), this system satisfies the conditional independence structure
we require, with the filtrations generated by the B'.

Furthermore, let HO be a Poisson point process of intensity Pro, where m is a finite
measure on Rd, and let x 1,X2,.., be some ordering of the points of il. Note that the
a.s. limit of p-1lP is simply m. Let {X*}OE, be the system of thinned processes based in
the Y*, as in (1.7). Finally, let XO be the particle superprocess (1.8), and let HO be the
historical process (3.4) corresponding to the branching system of BMT's described above,
with weak limit H.

Theorem 3.8 Let XI' be the particle superprocess described above. Assume that the progeny
distribution has p-th moment, for some p > 2, and that the measure m has all its mass
concentrated at the origin. If H > l1p, then, as p --+ co, the sequence {X'})ffl converges
weakly, in D(MF(Rd)), to a MF(Rd)-valued process X with a version with all sample paths
in C(MF(Rd)). Firlhermore, X has the following representation, in law, as a function of
the historical procers R based on a BMT:

X( M = J jp(T' Yt(dx)
H11 - -)-(3.8)

- Ic 0 (( r - r + ) y(dr)) Ht(dy),

where V: Rd --+ R ranges over all bounded, Lipshitz functions. The inner "stochastic integral"
is that defined in Theorem 3.5.
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Remarks: Note, firstly, that if H = 1/2 the fractional Brownian motions are regular
Brownian motions, the limit process is super Brownina motion, (3.8) is essentially vacuous,
and so there is nothing new to study.

Secondly, Theorem 3.9 does not cover the case when the initial measure is not concen-
trated at the origin. In this setting the historical process H has to be changed somewhat.
In particular, rather than basing the historical process on the BMT process y, we need
the process ,(t) := (z, y(t)), where z is a random variable distributed according to m and
independent of y. In that case the representation in (3.8) becomes

fRd xC ,(z + J ((/.. r - (-r)+ ) y(dr)) Ht(dz, dy). (3.9)

Note that for all Borel A E Rd, Ht(C, A) = m(A). We will comment on where the proof
needs to be changed to accomodate this setting when appropriate.

Finally, given the structure of (3.8), and its version (3.10) below for the historical process
HO of the finite system, it rather looks like one could prove Theorem 3.8 from the fact that
HA' =:, H', along with a simple application of the continuous mapping theorem. However, it
follows from the arguments appearing in Nualart and Zakai (1990) that the mapping from the) H-112 H-111/2 dr
Wiener space of BMT realizations to Rd defined by y -- fo. ((t- r) - (-r)+ ) y(dr)
can be extended to a continuous mapping on C if, and only if, H E (1/2, 1]. Consequently,
even if one worked to get this approach to generate a proof, it would work only for H > 1/2.

Proof: The first point to note is that the weak convergence and continuity of the limit follow
immediately from Theorem 2.1. Thus, all we really need establish is the representation (3.8).
For the moment, we fix t > 0 and bounded, Lipshitz V.

To establish (3.8), we commence by noting that (1.18) gives the following version of (3.8)
for the finite particle system.

X,(6p):= J, ,(x)Xt(dx)

9 (,, ( t_... c - ,- -," - .(3.10)

= Icw(f 0(o )H/ - (-r)!+1 ) y(dr)) Htu(dy).

(Note that if XG(0) • 0, as assumed here, the last line will change to the spirit of (3.9).)
To make the notation somewhat lighter for remainder of the proof, write the inner integral

in (3.10) as Fly), so that (3.10) becomes

S-/c • (F(y)) H` (dy). (3.11)

We now claim that there exists an approximation, say F•, to F, so that, for each fixed

c>0, and each W and t > 0,

IcW(F,(y)) H(dy) W J (F,(y)) Ht(dy) as p - oo. (3.12)

Furthermore,

c (F,(y)) Ht(dy) C3 J (F(v))Ht(dy) as f---, 0, (3.13)
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and, for each fixed p > 0,

JC v((y)) Hf(dy) C J p(F(Py)) Hr(dy) as - 0. (3.14)

The statement of the Theorem then follows via a standard argument. (e.g. Billingsley, 1968,
Theorem 4.2.)

We start with (3.12), for which purpose we replace the innermost integrand in (3.10) by
a simple function from (-oo, tJ --* R, of the form

f(s) = fj, if si-. _ s <s, j =1,...,k,

so that F,(y) becomes
kFc(y)- = j-" f W(ysA)- y(sj-)).

j=1

Define a map M: MF(C) --+ R by

M j k

M(K) = IC V h( y •23Sj) - yWS, -0) K (dy).

Note that this map is continuous. (Recall that C has the topology of uniform convergence
on compact intervals). Indeed, the function 0: C --+ R defined by

k

I(y) = OE f,(y(sj) - y(sj-1))
j=1

is, obviously, continuous in our topology and bounded. The continuity of M therefore follows
from the definition of the vague convergence. Theorem 3.2 and the continuous mapping
theorem now suffice to establish (3.12).

For the proofs of (3.13) and (3.14), we require some notation and the following brief
lemnma.

Let

L2= {f:_f2(s)ds < o},

and set IIff11 = f-. f 2(s) ds. Note, for later reference, that

Vt(r) := (t - r) -1 (2 - E V2, (3.15)

for all t < oo, if H E (0,1).

Lemma 3.9 Let V be bounded Lipshitz and f, 9 E Lt. Then there exists a universal constant
C < o0, dependent only on t, such that for every p > 0

El . f(s) -~s) t, 2(.) ]5 "11,P,, 11f _ g11
El f(P(J .~~ds)-pJ g(s) y(ds))J H"(dy)12  L CI(t~I~-I~) (3.16)
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where
IIVOLi:= sup { IV(Z) - V(Y) I

SO 1Z - Y11

is the usual Lipshitz norm. FIrthermore, (3.16) also holds when H' is replaced by the
limiting historical process H.

Proof. Note that the left hand side of (3.16), when written as a sum rather than an integral
over the particle historical process, is equivalent to

•-'• ~ ~ f • (!_ s.c)BO,.)) -V(f' g€,)B1'(.))j

<_ p-2 E[# of pairs (a,#6) alive at time t]2 . E[V(/0 (f(s) - g(s)) B(ds))J2

< j• 2 E[# of particles a alive at time t]2  Lip -Ell/ f0[f(s) - g(s)I B(ds)

-< C IIVoIIL, II- _g112),

where the last line follows from (2.7).
This proves (3.16) for the case of finite p. In the case when H' is replaced by the limiting

historical process H, the left hand side of (3.16) is equivalent to

"Ej IV ' f/(I!-sy cs ) .p g(s),y(ds))]

_<f -J(s) w(ds)) - ( g(s)w(ds)) Hg)(dy)H,(dw)

= ,ii,,. (Mt + M2 ) .p1)([-Ef [f(s) -g( s)]y(ds )] . [f [f(s )-g(s)]w(ds)1)),

where Pt 2) is the product Campbell measure of Definition 3.6, and M = EHo(I) = m(d).

Now use the representation of the pair (y, w) given in Theorem 3.7, to evaluate the P t
expectation above. Incorporating the factor (Mt + M 2) into the constant completes the
proof of the lemma. 0

We can now return to the proofs of (3.13) and (3.14). However, these are now quite easy.
Recall that in order to establish (3.12) we defined F, by approximating the function V of
(3.15) with a simple function on R. Call this approximation 4t'. We now add the additional
restraint that Ii~t - •4il(t) -+ 0 as c --a 0. In view of (3.15), this is easy to do. Applying
Lemma 3.9, (3.13) and (3.14) now follow immediately.

This completes the proof for fixed t and V. To complete the proof in general, note that
we can, obviously, repeat the above argument for a finite number of times and test functions,
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and so show that the joint distribution of (Xt (vp), X" (v,)) converges, as p -0, to
the joint distribution of the right hand-side of (3.8) with the same tl,..., t, and 91...,,
Therefore, (Xt,.... ,09) converges weakly in MF(C") as p --+ 0o, and, because of the
tightness guaranteed by Theorem 2.1, Theorem 7.8 of Ethier and Kurtz (1986) establishes
the full weak convergence of X"' the right hand side of (3.8).

This completes the proof.

4. Acknowledgement We are indebted to Professor E.B. Dynkin for a useful discussion
on how to best apply his results to obtain the weak convergence of finite dimensional distri-
butions in the proof of Theorem 2.1.
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